Missing binary outcomes under covariate‐dependent missingness in cluster randomised trials

نویسندگان

  • Anower Hossain
  • Karla DiazOrdaz
  • Jonathan W Bartlett
چکیده

Missing outcomes are a commonly occurring problem for cluster randomised trials, which can lead to biased and inefficient inference if ignored or handled inappropriately. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. In this study, we assessed the performance of unadjusted cluster-level analysis, baseline covariate-adjusted cluster-level analysis, random effects logistic regression and generalised estimating equations when binary outcomes are missing under a baseline covariate-dependent missingness mechanism. Missing outcomes were handled using complete records analysis and multilevel multiple imputation. We analytically show that cluster-level analyses for estimating risk ratio using complete records are valid if the true data generating model has log link and the intervention groups have the same missingness mechanism and the same covariate effect in the outcome model. We performed a simulation study considering four different scenarios, depending on whether the missingness mechanisms are the same or different between the intervention groups and whether there is an interaction between intervention group and baseline covariate in the outcome model. On the basis of the simulation study and analytical results, we give guidance on the conditions under which each approach is valid. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing continuous outcomes under covariate dependent missingness in cluster randomised trials

Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and linear mixed model analysis, under baseline covariate dependent missin...

متن کامل

Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study

BACKGROUND The objective of this simulation study is to compare the accuracy and efficiency of population-averaged (i.e. generalized estimating equations (GEE)) and cluster-specific (i.e. random-effects logistic regression (RELR)) models for analyzing data from cluster randomized trials (CRTs) with missing binary responses. METHODS In this simulation study, clustered responses were generated ...

متن کامل

Imputation strategies for missing binary outcomes in cluster randomized trials

BACKGROUND Attrition, which leads to missing data, is a common problem in cluster randomized trials (CRTs), where groups of patients rather than individuals are randomized. Standard multiple imputation (MI) strategies may not be appropriate to impute missing data from CRTs since they assume independent data. In this paper, under the assumption of missing completely at random and covariate depen...

متن کامل

Accounting for interactions and complex inter-subject dependency in estimating treatment effect in cluster-randomized trials with missing outcomes.

Semi-parametric methods are often used for the estimation of intervention effects on correlated outcomes in cluster-randomized trials (CRTs). When outcomes are missing at random (MAR), Inverse Probability Weighted (IPW) methods incorporating baseline covariates can be used to deal with informative missingness. Also, augmented generalized estimating equations (AUG) correct for imbalance in basel...

متن کامل

A simple method for analyzing data from a randomized trial with a missing binary outcome

BACKGROUND Many randomized trials involve missing binary outcomes. Although many previous adjustments for missing binary outcomes have been proposed, none of these makes explicit use of randomization to bound the bias when the data are not missing at random. METHODS We propose a novel approach that uses the randomization distribution to compute the anticipated maximum bias when missing at ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2017